Perspectivas sobre el agua de lastre: la metagenómica como una prioridad apremiante
DOI:
https://doi.org/10.51660/ridhs12183Palabras clave:
Metagenomics, Ballast waterResumen
La metagenómica representa un avance fundamental en la genómica, ya que ofrece conocimientos sin precedentes sobre un espectro diverso de microorganismos, incluidos bacterias, virus y hongos, que antes eran difíciles o imposibles de estudiar fuera de los entornos naturales. Sus aplicaciones abarcan un rango notable, desde la exploración de entidades cósmicas hasta las profundidades de nuestros océanos, incorporando numerosos análisis. Sin embargo, su utilización en el contexto del análisis del agua de lastre sigue siendo escasa. Esto destaca el quid de la presente revisión, que tiene como objetivo mostrar la necesidad de la metagenómica en el análisis del agua de lastre. Como es sabido, el agua de lastre es esencial para mantener la estabilidad de los buques en condiciones sin carga o durante condiciones climáticas adversas, con movimientos globales diarios estimados entre 3 y 10 mil millones de toneladas. Un solo buque de carga a granel puede transportar hasta 60.000 toneladas de agua de lastre para una carga de 200.000 toneladas. Se estima que más de 7.000 especies son transportadas diariamente en todo el mundo en el agua de lastre de los barcos, lo que plantea importantes riesgos ecológicos cuando estos organismos se descargan en nuevos entornos donde pueden convertirse en especies invasoras, alterando los ecosistemas locales, las economías y la salud humana. A pesar de que la Organización Marítima Internacional estableció directrices estándar D-2 y respaldó varias prácticas de gestión del agua de lastre para su descarga segura, el problema persiste. Esto subraya la necesidad de emplear la metagenómica para mejorar el seguimiento del contenido microbiano en el agua de lastre. La revisión resume algunas investigaciones realizadas en todo el mundo para analizar el agua de lastre mediante metagenómica, y todas exhiben diversos microbios, incluidas potentes formas bacterianas y virales patógenas. Los hallazgos respaldan nuestra opinión y hacen de la metagenómica una herramienta invaluable para monitorear la efectividad del tratamiento del agua de lastre de conformidad con las regulaciones ambientales en evolución. Aunque los desafíos que enfrentan las aplicaciones metagenómicas (es decir, el costo, la complejidad y la necesidad de bases de datos de referencia integrales) son importantes, seguramente serán superables a la luz de los continuos avances tecnológicos y metodológicos. Adoptar la metagenómica ofrece un camino no solo para abordar las amenazas ecológicas que plantean las transferencias de agua de lastre, sino también para salvaguardar el futuro de las industrias navieras mundiales.
Descargas
Referencias
Alves, L. D. F., Westmann, C. A., Lovate, G. L., De Siqueira, G. M. V., Borelli, T. C., & Guazzaroni, M.-E. (2018). Metagenomic approaches for understanding new concepts in microbial science. International Journal of Genomics, 2018, 1–15. https://doi.org/10.1155/2018/2312987
Ballast water. (2011). In Guide to ship sanitation (3rd ed.). World Health Organization. https://www.ncbi.nlm.nih.gov/books/NBK310820/
Ballast water and ships. (1996). In Stemming the tide: Controlling introductions of nonindigenous species by ships’ ballast water (pp. 22–31). National Academies Press. https://nap.nationalacademies.org/read/5294/chapter/4#27
Bax, N., Williamson, A., Aguero, M., Gonzalez, E., & Geeves, W. (2003). Marine invasive alien species: A threat to global biodiversity. Marine Policy, 27(4), 313–323. https://doi.org/10.1016/S0308-597X(03)00041-1
Bijlani, S., Stephens, E., Singh, N. K., Venkateswaran, K., & Wang, C. C. C. (2021). Advances in space microbiology. iScience, 24(5), 102395. https://doi.org/10.1016/j.isci.2021.102395
Bilawal Khaskheli, M., Wang, S., Zhang, X., Shamsi, I. H., Shen, C., Rasheed, S., Ibrahim, Z., & Baloch, D. M. (2023). Technology advancement and international law in marine policy, challenges, solutions and future prospective. Frontiers in Marine Science, 10, 1258924. https://doi.org/10.3389/fmars.2023.1258924
Bilio, M., & Niermann, U. (2004). Is the comb jelly really to blame for it all? Mnemiopsis leidyi and the ecological concerns about the Caspian Sea. Marine Ecology Progress Series, 269, 173–183. https://doi.org/10.3354/meps269173
Billington, C., Kingsbury, J. M., & Rivas, L. (2022). Metagenomics approaches for improving food safety: A review. Journal of Food Protection, 85(3), 448–464. https://doi.org/10.4315/JFP-21-301
Bradie, J. N., Drake, D. A. R., Ogilvie, D., Casas-Monroy, O., & Bailey, S. A. (2021). Ballast water exchange plus treatment lowers species invasion rate in freshwater ecosystems. Environmental Science & Technology, 55(1), 82–89. https://doi.org/10.1021/acs.est.0c05238
Carlton, J. T. (2008). The zebra mussel Dreissena polymorpha found in North America in 1986 and 1987. Journal of Great Lakes Research, 34(4), 770–773. https://doi.org/10.1016/S0380-1330(08)71617-4
Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A.-M., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88–100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
Chiriac, L. S., & Murariu, D. (2021). Application of metagenomics in ecology: A brief overview. Current Trends in Natural Sciences, 10(19), 346–353. https://doi.org/10.47068/ctns.2021.v10i19.045
Cohen, N. J., Slaten, D. D., Marano, N., Tappero, J. W., Wellman, M., Albert, R. J., Hill, V. R., Espey, D., Handzel, T., Henry, A., & Tauxe, R. V. (2012). Preventing maritime transfer of toxigenic Vibrio cholerae. Emerging Infectious Diseases, 18(10), 1680–1682. https://doi.org/10.3201/eid1810.120676
Culpan, T. (2024, January 15). Canals aren’t even the world’s biggest shipping chokepoints. The Economic Times. https://economictimes.indiatimes.com/small-biz/trade/exports/insights/canals-arent-even-the-worlds-biggest-shipping-chokepoints/articleshow/106851622.cms?from=mdr
Darling, J. A., Galil, B. S., Carvalho, G. R., Rius, M., Viard, F., & Piraino, S. (2017). Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Marine Policy, 85, 54–64. https://doi.org/10.1016/j.marpol.2017.08.014
David, M., & Gollasch, S. (2015). Global maritime transport and ballast water management – Issues and solutions (1st ed.). Springer. https://link.springer.com/book/10.1007/978-94-017-9367-4
David, M., Gollasch, S., Elliott, B., & Wiley, C. (2015). Ballast water management under the Ballast Water Management Convention. In M. David & S. Gollasch (Eds.), Global maritime transport and ballast water management (pp. 89–108). Springer Netherlands. https://doi.org/10.1007/978-94-017-9367-4_5
Dobrzycka-Krahel, A., Stepien, C. A., & Nuc, Z. (2023). Neocosmopolitan distributions of invertebrate aquatic invasive species due to euryhaline geographic history and human-mediated dispersal: Ponto-Caspian versus other geographic origins. Ecological Processes, 12(1), 2. https://doi.org/10.1186/s13717-022-00412-x
Duc Bui, V., Phong Nguyen, P. Q., & Tuyen Nguyen, D. (2021). A study of ship ballast water treatment technologies and techniques. Water Conservation & Management, 5(2), 121–130. https://doi.org/10.26480/wcm.02.2021.121.130
Epstein, G., & Smale, D. A. (2017). Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecology and Evolution, 7(20), 8624–8642. https://doi.org/10.1002/ece3.3430
Fonseca, V. G., Davison, P. I., Creach, V., Stone, D., Bass, D., & Tidbury, H. J. (2023). The application of eDNA for monitoring aquatic non-indigenous species: Practical and policy considerations. Diversity, 15(5), 631. https://doi.org/10.3390/d15050631
Gidwani, R. (2022). Impact of maritime trade on the Sierra Leonean economy [World Maritime University]. https://commons.wmu.se/cgi/viewcontent.cgi?article=3134&context=all_dissertations
Gollasch, S. (2007). Is ballast water a major dispersal mechanism for marine organisms? In Biological invasions (Vol. 193). Springer. https://www.researchgate.net/publication/225996029_Is_Ballast_Water_a_Major_Dispersal_Mechanism_for_Marine_Organisms
Gollasch, S., & David, M. (2019). Ballast water: Problems and management. In World seas: An environmental evaluation (pp. 237–250). Elsevier. https://doi.org/10.1016/B978-0-12-805052-1.00014-0
Harmful algal blooms. (1999). In From monsoons to microbes: Understanding the ocean’s role in human health. National Academies Press, US. https://www.ncbi.nlm.nih.gov/books/NBK230692/
Hernández Elizárraga, V. H., Ballantyne, S., O’Brien, L. G., Americo, J. A., Suhr, S. T., Senut, M.-C., Minerich, B., Merkes, C. M., Edwards, T. M., Klymus, K., Richter, C. A., Waller, D. L., Passamaneck, Y. J., Rebelo, M. F., & Gohl, D. M. (2023). Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience, 26(10), 108027. https://doi.org/10.1016/j.isci.2023.108027
Hwang, J., Park, S. Y., Lee, S., & Lee, T.-K. (2018). High diversity and potential translocation of DNA viruses in ballast water. Marine Pollution Bulletin, 137, 449–455. https://doi.org/10.1016/j.marpolbul.2018.10.053
Jägerbrand, A. K., Brutemark, A., Barthel Svedén, J., & Gren, I.-M. (2019). A review on the environmental impacts of shipping on aquatic and nearshore ecosystems. Science of The Total Environment, 695, 133637. https://doi.org/10.1016/j.scitotenv.2019.133637
Jeff Ross, D., Johnson, C. R., & Hewitt, C. L. (2003). Variability in the impact of an introduced predator (Asterias amurensis: Asteroidea) on soft-sediment assemblages. Journal of Experimental Marine Biology and Ecology, 288(2), 257–278. https://doi.org/10.1016/S0022-0981(03)00022-4
Jing, L., Chen, B., Zhang, B., & Peng, H. (2012). A review of ballast water management practices and challenges in harsh and arctic environments. Environmental Reviews, 20(2), 83–108. https://doi.org/10.1139/a2012-002
Johansson, M. L., Chaganti, S. R., Simard, N., Howland, K., Winkler, G., Rochon, A., Laget, F., Tremblay, P., Heath, D. D., & MacIsaac, H. J. (2017a). Attenuation and modification of the ballast water microbial community during voyages into the Canadian Arctic. Diversity and Distributions, 23(5), 567–576. https://doi.org/10.1111/ddi.12552
Johansson, M. L., Chaganti, S. R., Simard, N., Howland, K., Winkler, G., Rochon, A., Laget, F., Tremblay, P., Heath, D. D., & MacIsaac, H. J. (2017b). Attenuation and modification of the ballast water microbial community during voyages into the Canadian Arctic. Diversity and Distributions, 23(5), 567–576. https://doi.org/10.1111/ddi.12552
Jr., C. R. O. (1994, March). The introduction and spread of the zebra mussel in North America. In Proceedings of the Fourth International Zebra Mussel Conference, Madison, Wisconsin. https://www.csu.edu/cerc/documents/TheIntroductionandSpreadoftheZebraMusselinNorthAmerica.pdf
Karanassos, H. A. (2016). Shipbuilding basics and strength of ships. In Commercial ship surveying (pp. 29–60). Elsevier. https://doi.org/10.1016/B978-0-08-100303-9.00003-1
Karatayev, A. Y., & Burlakova, L. E. (2022). What we know and don’t know about the invasive zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels. Hydrobiologia. https://doi.org/10.1007/s10750-022-04950-5
Karlson, B., Andersen, P., Arneborg, L., Cembella, A., Eikrem, W., John, U., West, J. J., Klemm, K., Kobos, J., Lehtinen, S., Lundholm, N., Mazur-Marzec, H., Naustvoll, L., Poelman, M., Provoost, P., De Rijcke, M., & Suikkanen, S. (2021). Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae, 102, 101989. https://doi.org/10.1016/j.hal.2021.101989
Kerkhof, L. J., & Goodman, R. M. (2009). Ocean microbial metagenomics. Deep Sea Research Part II: Topical Studies in Oceanography, 56(19–20), 1824–1829. https://doi.org/10.1016/j.dsr2.2009.05.005
Kim, Y., Aw, T. G., Teal, T. K., & Rose, J. B. (2015). Metagenomic investigation of viral communities in ballast water. Environmental Science & Technology, 49(14), 8396–8407. https://doi.org/10.1021/acs.est.5b01633
Knowler, D. (2005). Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black sea. Ecological Economics, 52(2), 187–199. https://doi.org/10.1016/j.ecolecon.2004.06.013
Kraus, R. (2023). Ballast water management in ports: Monitoring, early warning and response measures to prevent biodiversity loss and risks to human health. Journal of Marine Science and Engineering, 11(11), 2144. https://doi.org/10.3390/jmse11112144
Kuang, B., Xiao, R., Hu, Y., Wang, Y., Zhang, L., Wei, Z., Bai, J., Zhang, K., Acuña, J. J., Jorquera, M. A., & Pan, W. (2023). Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Frontiers in Microbiology, 13, 1112669. https://doi.org/10.3389/fmicb.2022.1112669
Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022a). Ecological impacts of ballast water loading and discharge: Insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), e09107. https://doi.org/10.1016/j.heliyon.2022.e09107
Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022b). Ecological impacts of ballast water loading and discharge: Insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), e09107. https://doi.org/10.1016/j.heliyon.2022.e09107
Lakshmi, E., Priya, M., & Achari, V. S. (2021). An overview on the treatment of ballast water in ships. Ocean & Coastal Management, 199, 105296. https://doi.org/10.1016/j.ocecoaman.2020.105296
Lapidus, A. L., & Korobeynikov, A. I. (2021). Metagenomic data assembly – The way of decoding unknown microorganisms. Frontiers in Microbiology, 12, 613791. https://doi.org/10.3389/fmicb.2021.613791
Lema, N. K., Gemeda, M. T., & Woldesemayat, A. A. (2023). Recent advances in metagenomic approaches, applications, and challenges. Current Microbiology, 80(11), 347. https://doi.org/10.1007/s00284-023-03451-5
Maglić, L., Frančić, V., Zec, D., & David, M. (2019). Ballast water sediment management in ports. Marine Pollution Bulletin, 147, 237–244. https://doi.org/10.1016/j.marpolbul.2017.09.065
Masenya, K., Manganyi, M. C., & Dikobe, T. B. (2024). Exploring cereal metagenomics: Unravelling microbial communities for improved food security. Microorganisms, 12(3), 510. https://doi.org/10.3390/microorganisms12030510
Mayfield, A. E., Seybold, S. J., Haag, W. R., Johnson, M. T., Kerns, B. K., Kilgo, J. C., Larkin, D. J., Lucardi, R. D., Moltzan, B. D., Pearson, D. E., Rothlisberger, J. D., Schardt, J. D., Schwartz, M. K., & Young, M. K. (2021). Impacts of invasive species in terrestrial and aquatic systems in the United States. In T. M. Poland, T. Patel-Weynand, D. M. Finch, C. F. Miniat, D. C. Hayes, & V. M. Lopez (Eds.), Invasive species in forests and rangelands of the United States (pp. 5–39). Springer International Publishing. https://doi.org/10.1007/978-3-030-45367-1_2
McCarthy, S. A., & Khambaty, F. M. (1994). International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Applied and Environmental Microbiology, 60(7), 2597–2601. https://doi.org/10.1128/aem.60.7.2597-2601.1994
Nie, A., Wan, Z., Shi, Z., & Wang, Z. (2023). Cost-benefit analysis of ballast water treatment for three major port clusters in China: Evaluation of different scenario strategies. Frontiers in Marine Science, 10, 1174550. https://doi.org/10.3389/fmars.2023.1174550
Nwachukwu, B. C., & Babalola, O. O. (2022). Metagenomics: A tool for exploring key microbiome with the potentials for improving sustainable agriculture. Frontiers in Sustainable Food Systems, 6, 886987. https://doi.org/10.3389/fsufs.2022.886987
Outinen, O., Bailey, S. A., Broeg, K., Chasse, J., Clarke, S., Daigle, R. M., Gollasch, S., Kakkonen, J. E., Lehtiniemi, M., Normant-Saremba, M., Ogilvie, D., & Viard, F. (2021). Exceptions and exemptions under the ballast water management convention – Sustainable alternatives for ballast water management? Journal of Environmental Management, 293, 112823. https://doi.org/10.1016/j.jenvman.2021.112823
Patel, T., Chaudhari, H. G., Prajapati, V., Patel, S., Mehta, V., & Soni, N. (2022). A brief account on enzyme mining using metagenomic approach. Frontiers in Systems Biology, 2, 1046230. https://doi.org/10.3389/fsysb.2022.1046230
Peteiro, C., Sánchez, N., & Martínez, B. (2016). Mariculture of the Asian kelp Undaria pinnatifida and the native kelp Saccharina latissima along the Atlantic coast of Southern Europe: An overview. Algal Research, 15, 9–23. https://doi.org/10.1016/j.algal.2016.01.012
Poirier, M., Izurieta, R., Malavade, S., & McDonald, M. (2012). Re-emergence of cholera in the Americas: Risks, susceptibility, and ecology. Journal of Global Infectious Diseases, 4(3), 162. https://doi.org/10.4103/0974-777X.100576
Propelling India’s maritime vision: Impact of government policies. (2023). Research and Information System (RIS) and CMEC. https://www.ris.org.in/sites/default/files/Publication/CMEC-Book.pdf
Reference manual on maritime transport statistics (4.0). (2017). eurostat. https://ec.europa.eu/eurostat/cache/metadata/Annexes/mar_esms_pl_an_1.pdf
Rudnick, D. A., Hieb, K., Grimmer, K. F., & Resh, V. H. (2003). Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic and Applied Ecology, 4(3), 249–262. https://doi.org/10.1078/1439-1791-00152
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. https://doi.org/10.1016/j.gecco.2019.e00547
Saglam, H., & Duzgunes, E. (2018). Effect of ballast water on marine ecosystem. In F. Aloui & I. Dincer (Eds.), Exergy for a better environment and improved sustainability 2 (pp. 373–382). Springer International Publishing. https://doi.org/10.1007/978-3-319-62575-1_26
Shang, L., Hu, Z., Deng, Y., Liu, Y., Zhai, X., Chai, Z., Liu, X., Zhan, Z., Dobbs, F. C., & Tang, Y. Z. (2019). Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms, 7(8), 250. https://doi.org/10.3390/microorganisms7080250
Shiganova, T. A. (1998). Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fisheries Oceanography, 7(3–4), 305–310. https://doi.org/10.1046/j.1365-2419.1998.00080.x
Stewart, E. J. (2012). Growing unculturable bacteria. Journal of Bacteriology, 194(16), 4151–4160. https://doi.org/10.1128/JB.00345-12
Tan, E. B. P., & Beal, B. F. (2015). Interactions between the invasive European green crab, Carcinus maenas (L.), and juveniles of the soft-shell clam, Mya arenaria L., in eastern Maine, USA. Journal of Experimental Marine Biology and Ecology, 462, 62–73. https://doi.org/10.1016/j.jembe.2014.10.021
Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics—A guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(1), 3. https://doi.org/10.1186/2042-5783-2-3
Thurtle‐Schmidt, D. M., & Lo, T. (2018). Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochemistry and Molecular Biology Education, 46(2), 195–205. https://doi.org/10.1002/bmb.21108
U. Solanke, A., U. Tribhuvan, K., & Kanika. (n.d.). Genomics: An integrative approach for molecular biology. In Biotechnology—Progress and prospects (2015th ed., pp. 234–270). Studium press.
Ufarté, L., Laville, É., Duquesne, S., & Potocki-Veronese, G. (2015). Metagenomics for the discovery of pollutant degrading enzymes. Biotechnology Advances, 33(8), 1845–1854. https://doi.org/10.1016/j.biotechadv.2015.10.009
Wang, L., Wang, Q., Xue, J., Xiao, N., Lv, B., & Wu, H. (2020). Effects of holding time on the diversity and composition of potential pathogenic bacteria in ship ballast water. Marine Environmental Research, 160, 104979. https://doi.org/10.1016/j.marenvres.2020.104979
Wang, W.-L., Xu, S.-Y., Ren, Z.-G., Tao, L., Jiang, J.-W., & Zheng, S.-S. (2015). Application of metagenomics in the human gut microbiome. World Journal of Gastroenterology, 21(3), 803. https://doi.org/10.3748/wjg.v21.i3.803
Wang, Z., Countryman, A. M., Corbett, J. J., & Saebi, M. (2022). Economic and environmental impacts of ballast water management on small island developing states and least developed countries. Journal of Environmental Management, 301, 113779. https://doi.org/10.1016/j.jenvman.2021.113779
Weber, M. J., & Brown, M. L. (2011). Relationships among invasive common carp, native fishes and physicochemical characteristics in upper Midwest (USA) lakes. Ecology of Freshwater Fish, 20(2), 270–278. https://doi.org/10.1111/j.1600-0633.2011.00493.x
Werschkun, B., Banerji, S., Basurko, O. C., David, M., Fuhr, F., Gollasch, S., Grummt, T., Haarich, M., Jha, A. N., Kacan, S., Kehrer, A., Linders, J., Mesbahi, E., Pughiuc, D., Richardson, S. D., Schwarz-Schulz, B., Shah, A., Theobald, N., Von Gunten, U., … Höfer, T. (2014). Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. Chemosphere, 112, 256–266. https://doi.org/10.1016/j.chemosphere.2014.03.135
Xing, M.-N., Zhang, X.-Z., & Huang, H. (2012). Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnology Advances, 30(4), 920–929. https://doi.org/10.1016/j.biotechadv.2012.01.021
Xue, Z., Han, Y., Tian, W., & Zhang, W. (2023). Metagenome sequencing and 103 microbial genomes from ballast water and sediments. Scientific Data, 10(1), 536. https://doi.org/10.1038/s41597-023-02447-x
Xue, Z., Tian, W., Han, Y., Feng, Z., Wang, Y., & Zhang, W. (2023). The hidden diversity of microbes in ballast water and sediments revealed by metagenomic sequencing. Science of The Total Environment, 882, 163666. https://doi.org/10.1016/j.scitotenv.2023.163666
Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021a). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364
Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021b). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Revista Internacional de Desarrollo Humano y Sostenibilidad
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos se publican bajo los términos de una licencia que permite el uso, distribución y reproducción en cualquier medio, siempre que el trabajo original se cite correctamente. Ed&TIC conserva los derechos patrimoniales de las obras publicadas y promueve activamente la reutilización de las mismas bajo los términos de la licencia mencionada anteriormente, lo que fomenta la difusión del conocimiento y la colaboración en la comunidad académica.