Insights to ballast water: metagenomics as a pressing priority

Authors

DOI:

https://doi.org/10.51660/ridhs12183

Keywords:

Metagenomics, Ballast water

Abstract

Metagenomics represents a pivotal development in genomics, offering unprecedented insights into a diverse spectrum of microorganisms, including bacteria, viruses, and fungi, that were previously challenging or impossible to study outside natural environments. Its applications span a remarkable range, from exploring cosmic entities to the depths of our oceans, incorporating numerous analyses. Yet, its utilization in the context of ballast water analysis remains scarce. This highlights the crux of the present review, which aims to showcase the need for metagenomics in ballast water analysis. As is known, ballast water is essential for maintaining ship stability under no cargo conditions or during adverse weather, with daily global movements estimated to be between 3 to 10 billion tonnes. A single bulk cargo ship can transport up to 60,000 tonnes of ballast water for a 200,000-tonne load. It is estimated that over 7,000 species are transported globally in ships' ballast water daily, posing significant ecological risks when these organisms are discharged into new environments where they can become invasive species, disrupting local ecosystems, economies, and human health. Despite the International Maritime Organization setting D-2 standard guidelines and endorsing several ballast water management practices for its safe discharge, the issue persists. This underscores the necessity of employing metagenomics to enhance the monitoring of microbial content in ballast water. The review summarizes some research conducted worldwide to analyze ballast water by metagenomics, all exhibiting diverse microbes, including potent pathogenic bacterial and viral forms. The findings support our view, making metagenomics an invaluable tool to monitor ballast water treatment effectiveness in compliance with evolving environmental regulations. Though the challenges facing metagenomic applications—namely cost, complexity, and the need for comprehensive reference databases—are significant, they will surely be surmountable considering continual technological and methodological advancements. Embracing metagenomics offers a pathway to not only address the ecological threats posed by ballast water transfers but also to safeguard the future of global shipping industries.

Downloads

Download data is not yet available.

References

Alves, L. D. F., Westmann, C. A., Lovate, G. L., De Siqueira, G. M. V., Borelli, T. C., & Guazzaroni, M.-E. (2018). Metagenomic approaches for understanding new concepts in microbial science. International Journal of Genomics, 2018, 1–15. https://doi.org/10.1155/2018/2312987

Ballast water. (2011). In Guide to ship sanitation (3rd ed.). World Health Organization. https://www.ncbi.nlm.nih.gov/books/NBK310820/

Ballast water and ships. (1996). In Stemming the tide: Controlling introductions of nonindigenous species by ships’ ballast water (pp. 22–31). National Academies Press. https://nap.nationalacademies.org/read/5294/chapter/4#27

Bax, N., Williamson, A., Aguero, M., Gonzalez, E., & Geeves, W. (2003). Marine invasive alien species: A threat to global biodiversity. Marine Policy, 27(4), 313–323. https://doi.org/10.1016/S0308-597X(03)00041-1

Bijlani, S., Stephens, E., Singh, N. K., Venkateswaran, K., & Wang, C. C. C. (2021). Advances in space microbiology. iScience, 24(5), 102395. https://doi.org/10.1016/j.isci.2021.102395

Bilawal Khaskheli, M., Wang, S., Zhang, X., Shamsi, I. H., Shen, C., Rasheed, S., Ibrahim, Z., & Baloch, D. M. (2023). Technology advancement and international law in marine policy, challenges, solutions and future prospective. Frontiers in Marine Science, 10, 1258924. https://doi.org/10.3389/fmars.2023.1258924

Bilio, M., & Niermann, U. (2004). Is the comb jelly really to blame for it all? Mnemiopsis leidyi and the ecological concerns about the Caspian Sea. Marine Ecology Progress Series, 269, 173–183. https://doi.org/10.3354/meps269173

Billington, C., Kingsbury, J. M., & Rivas, L. (2022). Metagenomics approaches for improving food safety: A review. Journal of Food Protection, 85(3), 448–464. https://doi.org/10.4315/JFP-21-301

Bradie, J. N., Drake, D. A. R., Ogilvie, D., Casas-Monroy, O., & Bailey, S. A. (2021). Ballast water exchange plus treatment lowers species invasion rate in freshwater ecosystems. Environmental Science & Technology, 55(1), 82–89. https://doi.org/10.1021/acs.est.0c05238

Carlton, J. T. (2008). The zebra mussel Dreissena polymorpha found in North America in 1986 and 1987. Journal of Great Lakes Research, 34(4), 770–773. https://doi.org/10.1016/S0380-1330(08)71617-4

Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A.-M., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88–100. https://doi.org/10.1016/j.anifeedsci.2017.09.012

Chiriac, L. S., & Murariu, D. (2021). Application of metagenomics in ecology: A brief overview. Current Trends in Natural Sciences, 10(19), 346–353. https://doi.org/10.47068/ctns.2021.v10i19.045

Cohen, N. J., Slaten, D. D., Marano, N., Tappero, J. W., Wellman, M., Albert, R. J., Hill, V. R., Espey, D., Handzel, T., Henry, A., & Tauxe, R. V. (2012). Preventing maritime transfer of toxigenic Vibrio cholerae. Emerging Infectious Diseases, 18(10), 1680–1682. https://doi.org/10.3201/eid1810.120676

Culpan, T. (2024, January 15). Canals aren’t even the world’s biggest shipping chokepoints. The Economic Times. https://economictimes.indiatimes.com/small-biz/trade/exports/insights/canals-arent-even-the-worlds-biggest-shipping-chokepoints/articleshow/106851622.cms?from=mdr

Darling, J. A., Galil, B. S., Carvalho, G. R., Rius, M., Viard, F., & Piraino, S. (2017). Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Marine Policy, 85, 54–64. https://doi.org/10.1016/j.marpol.2017.08.014

David, M., & Gollasch, S. (2015). Global maritime transport and ballast water management – Issues and solutions (1st ed.). Springer. https://link.springer.com/book/10.1007/978-94-017-9367-4

David, M., Gollasch, S., Elliott, B., & Wiley, C. (2015). Ballast water management under the Ballast Water Management Convention. In M. David & S. Gollasch (Eds.), Global maritime transport and ballast water management (pp. 89–108). Springer Netherlands. https://doi.org/10.1007/978-94-017-9367-4_5

Dobrzycka-Krahel, A., Stepien, C. A., & Nuc, Z. (2023). Neocosmopolitan distributions of invertebrate aquatic invasive species due to euryhaline geographic history and human-mediated dispersal: Ponto-Caspian versus other geographic origins. Ecological Processes, 12(1), 2. https://doi.org/10.1186/s13717-022-00412-x

Duc Bui, V., Phong Nguyen, P. Q., & Tuyen Nguyen, D. (2021). A study of ship ballast water treatment technologies and techniques. Water Conservation & Management, 5(2), 121–130. https://doi.org/10.26480/wcm.02.2021.121.130

Epstein, G., & Smale, D. A. (2017). Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecology and Evolution, 7(20), 8624–8642. https://doi.org/10.1002/ece3.3430

Fonseca, V. G., Davison, P. I., Creach, V., Stone, D., Bass, D., & Tidbury, H. J. (2023). The application of eDNA for monitoring aquatic non-indigenous species: Practical and policy considerations. Diversity, 15(5), 631. https://doi.org/10.3390/d15050631

Gidwani, R. (2022). Impact of maritime trade on the Sierra Leonean economy [World Maritime University]. https://commons.wmu.se/cgi/viewcontent.cgi?article=3134&context=all_dissertations

Gollasch, S. (2007). Is ballast water a major dispersal mechanism for marine organisms? In Biological invasions (Vol. 193). Springer. https://www.researchgate.net/publication/225996029_Is_Ballast_Water_a_Major_Dispersal_Mechanism_for_Marine_Organisms

Gollasch, S., & David, M. (2019). Ballast water: Problems and management. In World seas: An environmental evaluation (pp. 237–250). Elsevier. https://doi.org/10.1016/B978-0-12-805052-1.00014-0

Harmful algal blooms. (1999). In From monsoons to microbes: Understanding the ocean’s role in human health. National Academies Press, US. https://www.ncbi.nlm.nih.gov/books/NBK230692/

Hernández Elizárraga, V. H., Ballantyne, S., O’Brien, L. G., Americo, J. A., Suhr, S. T., Senut, M.-C., Minerich, B., Merkes, C. M., Edwards, T. M., Klymus, K., Richter, C. A., Waller, D. L., Passamaneck, Y. J., Rebelo, M. F., & Gohl, D. M. (2023). Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience, 26(10), 108027. https://doi.org/10.1016/j.isci.2023.108027

Hwang, J., Park, S. Y., Lee, S., & Lee, T.-K. (2018). High diversity and potential translocation of DNA viruses in ballast water. Marine Pollution Bulletin, 137, 449–455. https://doi.org/10.1016/j.marpolbul.2018.10.053

Jägerbrand, A. K., Brutemark, A., Barthel Svedén, J., & Gren, I.-M. (2019). A review on the environmental impacts of shipping on aquatic and nearshore ecosystems. Science of The Total Environment, 695, 133637. https://doi.org/10.1016/j.scitotenv.2019.133637

Jeff Ross, D., Johnson, C. R., & Hewitt, C. L. (2003). Variability in the impact of an introduced predator (Asterias amurensis: Asteroidea) on soft-sediment assemblages. Journal of Experimental Marine Biology and Ecology, 288(2), 257–278. https://doi.org/10.1016/S0022-0981(03)00022-4

Jing, L., Chen, B., Zhang, B., & Peng, H. (2012). A review of ballast water management practices and challenges in harsh and arctic environments. Environmental Reviews, 20(2), 83–108. https://doi.org/10.1139/a2012-002

Johansson, M. L., Chaganti, S. R., Simard, N., Howland, K., Winkler, G., Rochon, A., Laget, F., Tremblay, P., Heath, D. D., & MacIsaac, H. J. (2017a). Attenuation and modification of the ballast water microbial community during voyages into the Canadian Arctic. Diversity and Distributions, 23(5), 567–576. https://doi.org/10.1111/ddi.12552

Johansson, M. L., Chaganti, S. R., Simard, N., Howland, K., Winkler, G., Rochon, A., Laget, F., Tremblay, P., Heath, D. D., & MacIsaac, H. J. (2017b). Attenuation and modification of the ballast water microbial community during voyages into the Canadian Arctic. Diversity and Distributions, 23(5), 567–576. https://doi.org/10.1111/ddi.12552

Jr., C. R. O. (1994, March). The introduction and spread of the zebra mussel in North America. In Proceedings of the Fourth International Zebra Mussel Conference, Madison, Wisconsin. https://www.csu.edu/cerc/documents/TheIntroductionandSpreadoftheZebraMusselinNorthAmerica.pdf

Karanassos, H. A. (2016). Shipbuilding basics and strength of ships. In Commercial ship surveying (pp. 29–60). Elsevier. https://doi.org/10.1016/B978-0-08-100303-9.00003-1

Karatayev, A. Y., & Burlakova, L. E. (2022). What we know and don’t know about the invasive zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels. Hydrobiologia. https://doi.org/10.1007/s10750-022-04950-5

Karlson, B., Andersen, P., Arneborg, L., Cembella, A., Eikrem, W., John, U., West, J. J., Klemm, K., Kobos, J., Lehtinen, S., Lundholm, N., Mazur-Marzec, H., Naustvoll, L., Poelman, M., Provoost, P., De Rijcke, M., & Suikkanen, S. (2021). Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae, 102, 101989. https://doi.org/10.1016/j.hal.2021.101989

Kerkhof, L. J., & Goodman, R. M. (2009). Ocean microbial metagenomics. Deep Sea Research Part II: Topical Studies in Oceanography, 56(19–20), 1824–1829. https://doi.org/10.1016/j.dsr2.2009.05.005

Kim, Y., Aw, T. G., Teal, T. K., & Rose, J. B. (2015). Metagenomic investigation of viral communities in ballast water. Environmental Science & Technology, 49(14), 8396–8407. https://doi.org/10.1021/acs.est.5b01633

Knowler, D. (2005). Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black sea. Ecological Economics, 52(2), 187–199. https://doi.org/10.1016/j.ecolecon.2004.06.013

Kraus, R. (2023). Ballast water management in ports: Monitoring, early warning and response measures to prevent biodiversity loss and risks to human health. Journal of Marine Science and Engineering, 11(11), 2144. https://doi.org/10.3390/jmse11112144

Kuang, B., Xiao, R., Hu, Y., Wang, Y., Zhang, L., Wei, Z., Bai, J., Zhang, K., Acuña, J. J., Jorquera, M. A., & Pan, W. (2023). Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Frontiers in Microbiology, 13, 1112669. https://doi.org/10.3389/fmicb.2022.1112669

Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022a). Ecological impacts of ballast water loading and discharge: Insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), e09107. https://doi.org/10.1016/j.heliyon.2022.e09107

Kurniawan, S. B., Pambudi, D. S. A., Ahmad, M. M., Alfanda, B. D., Imron, M. F., & Abdullah, S. R. S. (2022b). Ecological impacts of ballast water loading and discharge: Insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), e09107. https://doi.org/10.1016/j.heliyon.2022.e09107

Lakshmi, E., Priya, M., & Achari, V. S. (2021). An overview on the treatment of ballast water in ships. Ocean & Coastal Management, 199, 105296. https://doi.org/10.1016/j.ocecoaman.2020.105296

Lapidus, A. L., & Korobeynikov, A. I. (2021). Metagenomic data assembly – The way of decoding unknown microorganisms. Frontiers in Microbiology, 12, 613791. https://doi.org/10.3389/fmicb.2021.613791

Lema, N. K., Gemeda, M. T., & Woldesemayat, A. A. (2023). Recent advances in metagenomic approaches, applications, and challenges. Current Microbiology, 80(11), 347. https://doi.org/10.1007/s00284-023-03451-5

Maglić, L., Frančić, V., Zec, D., & David, M. (2019). Ballast water sediment management in ports. Marine Pollution Bulletin, 147, 237–244. https://doi.org/10.1016/j.marpolbul.2017.09.065

Masenya, K., Manganyi, M. C., & Dikobe, T. B. (2024). Exploring cereal metagenomics: Unravelling microbial communities for improved food security. Microorganisms, 12(3), 510. https://doi.org/10.3390/microorganisms12030510

Mayfield, A. E., Seybold, S. J., Haag, W. R., Johnson, M. T., Kerns, B. K., Kilgo, J. C., Larkin, D. J., Lucardi, R. D., Moltzan, B. D., Pearson, D. E., Rothlisberger, J. D., Schardt, J. D., Schwartz, M. K., & Young, M. K. (2021). Impacts of invasive species in terrestrial and aquatic systems in the United States. In T. M. Poland, T. Patel-Weynand, D. M. Finch, C. F. Miniat, D. C. Hayes, & V. M. Lopez (Eds.), Invasive species in forests and rangelands of the United States (pp. 5–39). Springer International Publishing. https://doi.org/10.1007/978-3-030-45367-1_2

McCarthy, S. A., & Khambaty, F. M. (1994). International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Applied and Environmental Microbiology, 60(7), 2597–2601. https://doi.org/10.1128/aem.60.7.2597-2601.1994

Nie, A., Wan, Z., Shi, Z., & Wang, Z. (2023). Cost-benefit analysis of ballast water treatment for three major port clusters in China: Evaluation of different scenario strategies. Frontiers in Marine Science, 10, 1174550. https://doi.org/10.3389/fmars.2023.1174550

Nwachukwu, B. C., & Babalola, O. O. (2022). Metagenomics: A tool for exploring key microbiome with the potentials for improving sustainable agriculture. Frontiers in Sustainable Food Systems, 6, 886987. https://doi.org/10.3389/fsufs.2022.886987

Outinen, O., Bailey, S. A., Broeg, K., Chasse, J., Clarke, S., Daigle, R. M., Gollasch, S., Kakkonen, J. E., Lehtiniemi, M., Normant-Saremba, M., Ogilvie, D., & Viard, F. (2021). Exceptions and exemptions under the ballast water management convention – Sustainable alternatives for ballast water management? Journal of Environmental Management, 293, 112823. https://doi.org/10.1016/j.jenvman.2021.112823

Patel, T., Chaudhari, H. G., Prajapati, V., Patel, S., Mehta, V., & Soni, N. (2022). A brief account on enzyme mining using metagenomic approach. Frontiers in Systems Biology, 2, 1046230. https://doi.org/10.3389/fsysb.2022.1046230

Peteiro, C., Sánchez, N., & Martínez, B. (2016). Mariculture of the Asian kelp Undaria pinnatifida and the native kelp Saccharina latissima along the Atlantic coast of Southern Europe: An overview. Algal Research, 15, 9–23. https://doi.org/10.1016/j.algal.2016.01.012

Poirier, M., Izurieta, R., Malavade, S., & McDonald, M. (2012). Re-emergence of cholera in the Americas: Risks, susceptibility, and ecology. Journal of Global Infectious Diseases, 4(3), 162. https://doi.org/10.4103/0974-777X.100576

Propelling India’s maritime vision: Impact of government policies. (2023). Research and Information System (RIS) and CMEC. https://www.ris.org.in/sites/default/files/Publication/CMEC-Book.pdf

Reference manual on maritime transport statistics (4.0). (2017). eurostat. https://ec.europa.eu/eurostat/cache/metadata/Annexes/mar_esms_pl_an_1.pdf

Rudnick, D. A., Hieb, K., Grimmer, K. F., & Resh, V. H. (2003). Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic and Applied Ecology, 4(3), 249–262. https://doi.org/10.1078/1439-1791-00152

Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. https://doi.org/10.1016/j.gecco.2019.e00547

Saglam, H., & Duzgunes, E. (2018). Effect of ballast water on marine ecosystem. In F. Aloui & I. Dincer (Eds.), Exergy for a better environment and improved sustainability 2 (pp. 373–382). Springer International Publishing. https://doi.org/10.1007/978-3-319-62575-1_26

Shang, L., Hu, Z., Deng, Y., Liu, Y., Zhai, X., Chai, Z., Liu, X., Zhan, Z., Dobbs, F. C., & Tang, Y. Z. (2019). Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms, 7(8), 250. https://doi.org/10.3390/microorganisms7080250

Shiganova, T. A. (1998). Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fisheries Oceanography, 7(3–4), 305–310. https://doi.org/10.1046/j.1365-2419.1998.00080.x

Stewart, E. J. (2012). Growing unculturable bacteria. Journal of Bacteriology, 194(16), 4151–4160. https://doi.org/10.1128/JB.00345-12

Tan, E. B. P., & Beal, B. F. (2015). Interactions between the invasive European green crab, Carcinus maenas (L.), and juveniles of the soft-shell clam, Mya arenaria L., in eastern Maine, USA. Journal of Experimental Marine Biology and Ecology, 462, 62–73. https://doi.org/10.1016/j.jembe.2014.10.021

Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics—A guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(1), 3. https://doi.org/10.1186/2042-5783-2-3

Thurtle‐Schmidt, D. M., & Lo, T. (2018). Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochemistry and Molecular Biology Education, 46(2), 195–205. https://doi.org/10.1002/bmb.21108

U. Solanke, A., U. Tribhuvan, K., & Kanika. (n.d.). Genomics: An integrative approach for molecular biology. In Biotechnology—Progress and prospects (2015th ed., pp. 234–270). Studium press.

Ufarté, L., Laville, É., Duquesne, S., & Potocki-Veronese, G. (2015). Metagenomics for the discovery of pollutant degrading enzymes. Biotechnology Advances, 33(8), 1845–1854. https://doi.org/10.1016/j.biotechadv.2015.10.009

Wang, L., Wang, Q., Xue, J., Xiao, N., Lv, B., & Wu, H. (2020). Effects of holding time on the diversity and composition of potential pathogenic bacteria in ship ballast water. Marine Environmental Research, 160, 104979. https://doi.org/10.1016/j.marenvres.2020.104979

Wang, W.-L., Xu, S.-Y., Ren, Z.-G., Tao, L., Jiang, J.-W., & Zheng, S.-S. (2015). Application of metagenomics in the human gut microbiome. World Journal of Gastroenterology, 21(3), 803. https://doi.org/10.3748/wjg.v21.i3.803

Wang, Z., Countryman, A. M., Corbett, J. J., & Saebi, M. (2022). Economic and environmental impacts of ballast water management on small island developing states and least developed countries. Journal of Environmental Management, 301, 113779. https://doi.org/10.1016/j.jenvman.2021.113779

Weber, M. J., & Brown, M. L. (2011). Relationships among invasive common carp, native fishes and physicochemical characteristics in upper Midwest (USA) lakes. Ecology of Freshwater Fish, 20(2), 270–278. https://doi.org/10.1111/j.1600-0633.2011.00493.x

Werschkun, B., Banerji, S., Basurko, O. C., David, M., Fuhr, F., Gollasch, S., Grummt, T., Haarich, M., Jha, A. N., Kacan, S., Kehrer, A., Linders, J., Mesbahi, E., Pughiuc, D., Richardson, S. D., Schwarz-Schulz, B., Shah, A., Theobald, N., Von Gunten, U., … Höfer, T. (2014). Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. Chemosphere, 112, 256–266. https://doi.org/10.1016/j.chemosphere.2014.03.135

Xing, M.-N., Zhang, X.-Z., & Huang, H. (2012). Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnology Advances, 30(4), 920–929. https://doi.org/10.1016/j.biotechadv.2012.01.021

Xue, Z., Han, Y., Tian, W., & Zhang, W. (2023). Metagenome sequencing and 103 microbial genomes from ballast water and sediments. Scientific Data, 10(1), 536. https://doi.org/10.1038/s41597-023-02447-x

Xue, Z., Tian, W., Han, Y., Feng, Z., Wang, Y., & Zhang, W. (2023). The hidden diversity of microbes in ballast water and sediments revealed by metagenomic sequencing. Science of The Total Environment, 882, 163666. https://doi.org/10.1016/j.scitotenv.2023.163666

Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021a). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364

Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021b). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364

Downloads

Published

2024-09-01

How to Cite

Insights to ballast water: metagenomics as a pressing priority. (2024). International Journal of Human Development and Sustainability, 1(2), 115-142. https://doi.org/10.51660/ridhs12183