Robot para la educación inclusiva
DOI:
https://doi.org/10.51660/ridhs1226Palabras clave:
Robot, Educación, Escuela Técnica, Pedagogía inclusiva, MecatrónicaResumen
Este estudio se centra en el diseño, desarrollo y evaluación de un robot móvil educativo, denominado Robot-T2, para ser utilizado en actividades educativas dentro de una escuela técnica. El objetivo principal fue crear una plataforma versátil que permita a los estudiantes explorar conceptos de programación, ingeniería y ciencia de manera práctica y colaborativa. La metodología incluyó un enfoque iterativo de diseño y pruebas, donde se incorporaron retroalimentaciones de estudiantes y profesores para mejorar continuamente la funcionalidad del robot. Las pruebas abarcaban navegación autónoma, seguimiento de líneas y manipulación de objetos, utilizando el software de programación OnBotJava y el Control-Hub como interfaz principal. Los resultados demostraron que el Robot-T2 es altamente eficiente y adaptable en diversos contextos educativos, mostrando una precisión notable en la navegación y la manipulación de objetos. Las iteraciones de diseño mejoraron significativamente el rendimiento del robot, enriqueciendo la experiencia educativa y promoviendo el aprendizaje activo. En conclusión, la robótica educativa, representada por el Robot-T2, tiene un gran potencial para enriquecer el proceso de enseñanza y aprendizaje en las escuelas técnicas, fomentando el trabajo en equipo, la resolución de problemas y la integración de tecnología en el aula. Se espera que este proyecto inspire futuros desarrollos en robótica educativa.
Descargas
Referencias
Ahmad, M. I., & Larsson, T. (2017). Enhancing student engagement through educational robotics. En Proceedings of the 12th International Conference on Robotics and Automation in Education (pp. 76-81). https://doi.org/10.1109/RAE.2017.7943914
Alimisis, D., Moro, M., Menegatti, E., & Pina, A. (2007). Introducing robotics to teachers and schools: Experiences from the TERECoP project. International Journal of Technology and Design Education, 17(2), 15-30. https://doi.org/10.1007/s10798-007-9028-0
Anderson, I. F. (2019). Eco-turbina. Turbo ventilador eléctrico 220 (VAC)–50 (Hz), de bajo consumo: eficiente energéticamente. Innovación y Desarrollo Tecnológico y Social, 1(1), 1-28. https://doi.org/10.24215/26838559e001
Anderson, I. F. (2019). Mejoras de eficiencia energética (EE) en los motores monofásicos sincrónicos de 220 (VAC)/50 (Hz), tipo PMSM. Revista UIS Ingenierías, 18(4), 57-70. https://doi.org/10.18273/revuin.v18n4-2019005
Anderson, I. F. (2019). Diseño industrial mecatrónico y eficiencia energética (EE). En IX Jornadas de Investigación en Disciplinas Artísticas y Proyectuales (JIDAP), pp. 1-10.
Anderson, I. F. (2021). 1º Premio Nacional INNOVAR 2021 de la Agencia Nacional I+D+I – MINCYT Nación: extractor de aire centrífugo, para ambientes contaminados con SARS-CoV-2, de alta eficiencia energética. En X Jornadas de Investigación en Disciplinas Artísticas y Proyectuales (JIDAP), pp. 1-11.
Anderson, I. F. (2022). Diseño industrial y electromecánico de un extractor de aire centrífugo de alta eficiencia energética para ambientes con Covid-19. Investigación Aplicada e Innovación I+i: TECSUP, 16, 44-57.
Anderson, I. F. (2022). Energy Efficient Centrifugal Air Extractor for Environments Contaminated with Sars-Cov-2 (Coronavirus). How to Build a Motor That Saves Electricity. Preprints, 1-31. https://doi.org/10.31219/osf.io/gepbc
Anderson, I. F. (2022). Hertzian Motor: An Innovative Method to Obtain an Energy Efficiency of 90%, in Savings in Single-Phase Active Energy (Kwh), If The “Fan Law” Is Applied To PMSM-Type Synchronous Motors Without The Need to Apply The Use of Variable Frequency Drives (VFD). Preprints, 1-58. https://doi.org/10.20944/preprints202212.0319.v1
Anderson, I. F. (2023). Extractor de aire centrífugo energéticamente eficiente para ambientes contaminados con SARS-CoV-2 (Coronavirus). Innovación y Desarrollo Tecnológico y Social, 4(2), 20-67. https://doi.org/10.24215/26838559e032
Anwar, S., & Bajracharya, R. (2020). Robotic education and its influence on students’ learning motivation and skills development. International Journal of Advanced Computer Science and Applications, 11(8), 35-42. https://doi.org/10.14569/IJACSA.2020.0110805
Arlegui, J., Balaguer, C., & Saltarén, R. (2011). Robotics in education: Engineering students' improvements through projects. En Proceedings of the 7th International Conference on Research and Education in Robotics (pp. 1-10). https://doi.org/10.1007/978-3-642-31262-0_1
Atmatzidou, S., & Demetriadis, S. (2016). Advancing students' computational thinking skills through educational robotics: A study on age and gender relevant differences. Association for the Advancement of Artificial Intelligence.
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988. https://doi.org/10.1016/j.compedu.2011.10.006
Cantero, E., & Hernández, E. E. (2021). Identificación de saberes ancestrales en la etnia Emberá Katío sobre el cuidado del medioambiente. Praxis & Saber, 12(31), e11436. https://doi.org/10.19053/22160159.v12.n31.2021.11436
Caycedo Lozano, L., & Trujillo Suárez, D. M. (2020). Concepto del agua y sus implicaciones en la formación ambiental. Revista Boletín Redipe, 9(7), 61-70.
Chambers, J., Carbonaro, M., & Rex, M. (2007). Scaffolding Knowledge Construction through Robotic Technology: A Middle School Case Study. Canadian Journal of Learning and Technology, 33(3). https://doi.org/10.21432/T2H59J
Chorro, E., Frontino Bajo, V., Sierra-Cauca, L., Daniela, H., Vivas, S., Fernanda, M., & Manquillo, B. (s.f.). Restauración y Conservación de la Fuente Hídrica.
Daza-Daza, A. R., Rodríguez-Valencia, N., & Carabalí-Angola, A. (2018). El recurso agua en las comunidades indígenas wayuu de La Guajira Colombiana. Parte 1: una mirada desde los saberes y prácticas ancestrales. Información tecnológica, 29(6), 13-24.
Eguchi, A. (2014). Educational Robotics for Promoting 21st Century Skills. Journal of Automation, Mobile Robotics and Intelligent Systems, 8(1), 5-11. https://doi.org/10.14313/JAMRIS_1-2014/1
Freire, J. P., Neves, P., & Ferreira, M. J. (2017). Robotics for Education and Training in Inclusive Settings. En Advances in Intelligent Systems and Computing (Vol. 549, pp. 661–670). Springer.
Higgins, K., & Boone, R. (2018). Robot-Assisted Instruction: Results from a School-Based Field Trial. Journal of Special Education Technology, 33(1), 30–41.
Kim, Y., & Baylor, A. L. (2006). Pedagogical agents as learning companions: The role of agent competency and type of interaction. En Proceedings of the 7th International Conference on Learning Sciences (pp. 414-420). International Society of the Learning Sciences. https://doi.org/10.22318/icls2006.414
Loayza-Maturrano, E. F. (2020). La investigación cualitativa en Ciencias Humanas y Educación: Criterios para elaborar artículos científicos. Educare et Comunicare, 8(2), 56-66.
Medina, R. M. S., Ohrt, U. K., & de La Torre, G. R. (2018). Conocimientos y saberes locales en tres propuestas curriculares para educación indígena. Sinéctica, Revista Electrónica de Educación, (50), 01-18.
Mendoza Fragoso, A. (2019). Ontologías del agua y relaciones de poder en torno al paisaje hídrico en el territorio indígena mazahua del estado de México. Revista Colombiana de antropología, 55(1), 91-118.
Mubin, O., Stevens, C. J., Shahid, S., Mahmud, A. A., & Dong, J. J. (2013). A review of the applicability of robots in education. Technology for Education and Learning, 1(1), 1-7. https://doi.org/10.2316/Journal.209.2013.1.209-0015
Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., Dong, J. J., & Hu, J. (2021). A Systematic Review of Educational Robotics for Inclusive Education: Current Status and Future Perspectives. Robotics, 10(2), 81.
Oyola Zambrano, R. N. (2019). La protección de la fuente hídrica tres quebradas en la vereda Tierradentro del municipio Morales.
Peña García, A. (2007). Una perspectiva social de la problemática del agua. Investigaciones geográficas, (62), 125-137.
Pérez Rodríguez, S. E. (2011). Educación ambiental: estrategia en la enseñanza de contaminación en fuentes hídricas. Luna Azul, (33), 10-14.
Piza Burgos, N. D., Amaiquema Márquez, F. A., & Beltrán Baquerizo, G. E. (2019). Métodos y técnicas en la investigación cualitativa. Algunas precisiones necesarias. Conrado, 15(70), 455-459.
Ramírez Patiño, A. X., Ruíz Serna, S., & Salazar García, P. (2022). Impacto de la estrategia del lavado de manos en comunidades indígenas del departamento de Risaralda.
Suárez-Segura, Y. (2020). El cuidado y la preservación del agua como estrategia pedagógica en el centro educativo Mauricio Ramírez Gómez.
Trujillo, C. A., Rangel, J. A. M., Carrera, J. R. A., & Tapia, K. R. L. (2018). Significados del agua para la comunidad indígena Fakcha Llakta, Canton Otavalo, Ecuador. Ambiente & Sociedade, 21.
Useche, M. C., Artigas, W., Queipo, B., & Perozo, E. (2019). Técnicas e instrumentos de recolección de datos cuali-cuantitativos.
Vidal Camayo, Jeison. (2022). Enseñanza por medio de los conocimientos ancestrales sobre reforestación en los nacederos de agua en la Institución Educativa Indígena Buscando Horizontes De Tierradentro Morales Cauca. Libertadores.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Revista Internacional de Desarrollo Humano y Sostenibilidad
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos se publican bajo los términos de una licencia que permite el uso, distribución y reproducción en cualquier medio, siempre que el trabajo original se cite correctamente. Ed&TIC conserva los derechos patrimoniales de las obras publicadas y promueve activamente la reutilización de las mismas bajo los términos de la licencia mencionada anteriormente, lo que fomenta la difusión del conocimiento y la colaboración en la comunidad académica.