Análisis cienciométrico de COVID-19: una base para desarrollar una teoría general de la pandemia desde la perspectiva de las comunicaciones académicas

Autores/as

DOI:

https://doi.org/10.51660/ridhs12181

Palabras clave:

pandemia de COVID-19, análisis cienciométrico, comunicaciones académicas, teoría, teoría de la quíntuple hélice

Resumen

Este estudio realizó un análisis cienciométrico de la pandemia de COVID-19 con el objetivo de proporcionar una base para desarrollar una teoría general de las pandemias desde una perspectiva de las comunicaciones académicas. Para lograrlo, el estudio buscó responder a una sola pregunta: ¿Cómo se relacionan entre sí el conocimiento, la innovación y el medio ambiente durante una pandemia? Carayannis y Campbell (2010) plantearon una pregunta similar desde una perspectiva diferente, y este estudio se basa en ella al intentar proporcionar un marco en caso de que ocurra otra pandemia. Para comprender el comportamiento de publicación de los académicos durante el período de cinco años de 2019 a 2024, los autores analizaron datos extraídos de Scopus entre el 18 y el 28 de agosto de 2023. La estrategia de búsqueda utilizada fue “COVID-19 OR Coronavirus OR Coronaviruses OR SARS-CoV -2 O 2019-nCoV”. La búsqueda arrojó 511.920 resultados, de los cuales 17.487 se utilizaron para este estudio. Se descubrió que muchos países de todo el mundo formaban seis grupos. Como resultado, los investigadores de estos países continuaron produciendo importantes resultados de investigación, lo que generó un gran número de citas y mejoró su posición dentro de las comunicaciones académicas. Un hallazgo interesante de esta investigación reveló temas nuevos y relevantes, lo que llevó a los autores a vincular estos hallazgos con la teoría de la quíntuple hélice. El estudio recomendó utilizar modelos empíricos y teóricos para desarrollar teorías que puedan definir mejor las pandemias.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Achem, V. O., & Ani, K. J. (2022). Systemic crisis of infodemic in a pandemic: COVID-19, 5G network, society and symbolic interactionism. Journal of African Films and Diaspora Studies, 5(4). https://doi.org/10.31920/2516-2713/2022/5n4a2

Adakawa, M. I., & Harinarayana, N. S. (2022). Insight into intellectual property in patent medicine: An Indian perspective. Unnes Law Journal, 8(2), 377-391. https://doi.org/10.15294/ulj.v8i2.60716

Adakawa, M. I., Balachandran, C., Kumara, P. B., & Harinarayana, N. S. (2023). History of pandemics—A critical pathway to challenge scholarly communication? National Conference on Exploring the Past, Present, and Future of Library and Information Science, May 29 & 30, 2023.

Agarwal, B., Agarwal, A., Harjule, P., & Rahman, A. (2023). Understanding the intent behind sharing misinformation on social media. Journal of Experimental and Theoretical Artificial Intelligence, 35(4), 573-587. https://doi.org/10.1080/0952813X.2021.196063

Ahadzadeh, A. S., Ong, F. S., & Wu, S. L. (2023). Social media skepticism and belief in conspiracy theories about COVID-19: The moderating role of the dark triad. Current Psychology. https://doi.org/10.1007/s12144-021-02198-1

Ahmed, W., Vidal-Alaball, J., Downing, J., & Seguí, F. L. (2020). COVID-19 and the 5G conspiracy theory: Social network analysis of twitter data. Journal of Medical Internet Research. https://doi.org/10.2196/19458

Alassad, M., Hussain, M. N., & Agarwal, N. (2020). How to control coronavirus conspiracy theories in Twitter? A systems thinking and social networks modeling approach. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020. https://doi.org/10.1109/BigData50022.2020.9378400

Aviv-Reuven, S., & Rosenfeld, A. (2021). Publication patterns’ changes due to the COVID-19 pandemic: A longitudinal and short-term scientometric analysis. Scientometrics, 126, 6761–6784. https://doi.org/10.1007/s11192-021-04059-x

Ay, İ. E., Tazegul, G., & Duranoğlu, Y. (2022). A comparison of scientometric data and publication policies of ophthalmology journals. Indian Journal of Ophthalmology, 70, 1801-1807. https://doi.org/10.4103/ijo.IJO_2720_21

Carayannis, E. G., & Campbell, D. F. J. (2010). Triple helix, quadruple helix and quintuple helix and how do knowledge, innovation and the environment relate to each other? A proposed framework for a trans-disciplinary analysis of sustainable development and social ecology. International Journal of Social Ecology and Sustainable Development, 1(1), 41-69. https://doi.org/10.4018/jsesd.2010010105

COVID-19 Treatment Guidelines Panel. (2024). Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health.

Cunningham, E., Smyth, B., & Greene, D. (2021). Collaboration in the time of COVID: A scientometric analysis of multidisciplinary SARS-CoV-2 research. Humanities & Social Sciences Communications, 8(240), 1-8. https://doi.org/10.1057/s41599-021-00922-7

Desai, A. N., Kraemer, M. U. G., Bhatia, S., Cori, A., Nouvellet, P., Herringer, M., Cohn, E. L., Carrion, M., Brownstein, J. S., Madoff, L. C., & Lassmann, B. (2019). Spatial/temporal analysis in infectious disease outbreaks—Real-time epidemic forecasting: Challenges and opportunities. Health Security, 17(4), 1-8. https://doi.org/10.1089/hs.2019.0022

Douglas, K. M. (2021). COVID-19 conspiracy theories. Group Processes and Intergroup Relations. https://doi.org/10.1177/1368430220982068

Galli, M., Migliano, F., Fasano, V., Silvani, A., Passarella, D., & Citarella, A. (2024). Nirmatrelvir: From discovery to modern and alternative synthetic approaches. Processes, 12(1242), 1-33. https://doi.org/10.3390/pr12061242

Gannuscio, V. (2022). From holocough to great reset. Antisemitic conspiracy theories around the coronavirus. Muttersprache. https://doi.org/10.53371/60415

Groicher, M. J., Grattagliano, I., Loconsole, P., & Maglie, R. (2022). A review of the psychosocial and criminological factors underlying COVID-19 conspiracy theories. Rassegna Italiana di Criminologia. https://doi.org/10.7347/RIC-032022-p189

Gurnani, B., Kaur, K., & Nath, M. (2022). Publication addiction during COVID-19 pandemic - A rising boon or a bane. Indian Journal of Ophthalmology, 70, 1402-1403. https://doi.org/10.4103/ijo.IJO_386_22

He, X., Chen, H., Zhu, X., & Gao, W. (2023). Real-world effectiveness of non-pharmaceutical interventions in containing COVID-19 pandemic after the roll-out of coronavirus vaccines: A systematic review. medRxiv preprint. https://doi.org/10.1101/2023.11.07.23297704

He, J., Liu, X., Lu, X., Zhong, M., Jia, C., Lucero-Prisno, D. E. III., Ma, Z. F., & Li, H. (2023). The impact of COVID-19 on global health journals: An analysis of impact factor and publication trends. BMJ Global Health, 8, 1-12. https://doi.org/10.1136/bmjgh-2022-011514

Jones, M., & Karsten, H. (2003). Review: Structuration theory and information systems research. Research Papers in Management Studies: University of Cambridge, Judge Institute of Management.

Kaur, K., & Gurnani, B. (2021). Intricate scientometric analysis and citation trend of COVID-19-related publications in Indian Journal of Ophthalmology during COVID-19 pandemic. Indian Journal of Ophthalmology, 69, 2202-2210.

Lewis, D. (2021). The COVID pandemic has harmed researcher productivity – and mental health. https://www.nature.com/articles/d41586-021-03045-w

Mahdavi, A., Atlasi, R., & Naemi, R. (2022). Teledentistry during COVID-19 pandemic: Scientometric and content analysis approach. BMC Health Services Research, 22, 1-17. https://doi.org/10.1186/s12913-022-08488-z

Malik, A. A., Butt, N. S., Bashir, M. A., & Gilani, S. A. (2020). A scientometric analysis on coronaviruses research (1900–2020): Time for a continuous, cooperative and global approach. Journal of Infection and Public Health, 14, 310-319. https://doi.org/10.1016/j.jiph.2020.12.008

Manca, D. (2022). Different approaches to epidemic modeling – The COVID-19 case study. Proceedings of the 32nd European Symposium on Computer Aided Process Engineering (ESCAPE32), June 12-15, 2022, Toulouse, France. https://doi.org/10.1016/B978-0-323-95879-0.50274-5

Mesfin, Y. M., Blais, J. E., Kibret, K. T., Tegegne, T. K., Cowling, B. J., & Wu, P. (2024). Effectiveness of nirmatrelvir/ritonavir and molnupiravir in non-hospitalized adults with COVID-19: Systematic review and meta-analysis of observational studies. J Antimicrob Chemother, 1-13. https://doi.org/10.1093/jac/dkae163

Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C., & Vasilakis, C. (2020). Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. European Journal of Operational Research, 290, 99-115. https://doi.org/10.1016/j.ejor.2020.08.001

Okolie, C. C., & Ogundeji, A. A. (2022). Effect of COVID-19 on agricultural production and food security: A scientometric analysis. Humanities & Social Sciences Communications, 9(64), 1-13. https://doi.org/10.1057/s41599-022-01080-0

Reis, S., Metzendorf, M.-I., Kuehn, R., Popp, M., Gagyor, I., Kranke, P., Meybohm, P., Skoetz, N., & Weibel, S. (2023). Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database of Systematic Reviews, 11(CD015395). https://doi.org/10.1002/14651858.CD015395.pub3

Rodríguez-Rodríguez, I., Rodríguez, J.-V., Shirvanizadeh, N., Ortiz, A., & Pardo-Quiles, D.-J. (2022). Applications of artificial intelligence, machine learning, big data and the internet of things to the COVID-19 pandemic: A scientometric review using text mining. International Journal of Environmental Research and Public Health, 18(8578), 1-26. https://doi.org/10.3390/ijerph181685

Romer, D., & Jamieson, K. H. (2020). Conspiracy theories as barriers to controlling the spread of COVID-19 in the U.S. Social Science and Medicine. https://doi.org/10.1016/j.socscimed.2020.113356

Santos, B. S., Silva, I., Lima, L., Endo, P. T., Alves, G., & Ribeiro-Dantas, M. C. (2022). Discovering temporal scientometric knowledge in COVID-19 scholarly production. Scientometrics, 127, 1609–1642. https://doi.org/10.1007/s11192-021-04260-y

Spink, A., & Cole, C. (2007). Information behavior: A socio-cognitive ability. Evolutionary Psychology, 5(2), 257-274. https://doi.org/10.1177/147470490700500201

Sternisko, A., Cichocka, A., Cislak, A., & Van Bavel, J. J. (2023). National narcissism predicts the belief in and the dissemination of conspiracy theories during the COVID-19 pandemic: Evidence from 56 countries. Personality and Social Psychology Bulletin. https://doi.org/10.1177/01461672211054947

Suleyman, M., & Bhaskar, M. (2023). The coming wave: Technology, power, and the 21st century's greatest dilemma. New York: Crown Publishing Group.

Sun, J., Chen, X., Zhang, Z., Lai, S., Zhao, B., Liu, H., Wang, S., Huan, W., Zhao, R., Ng, M. T. A., & Zheng, Y. (2020). Forecasting the long-term trend of COVID-19 epidemic using a dynamic model. Scientific Reports, 10(21122), 1-10. https://doi.org/10.1038/s41598-020-78084-w

Whittington, R. (2015). Giddens, structuration theory, and strategy as practice. https://doi.org/10.1017/CCO9781139681032.009

Descargas

Publicado

2024-07-01

Cómo citar

Análisis cienciométrico de COVID-19: una base para desarrollar una teoría general de la pandemia desde la perspectiva de las comunicaciones académicas. (2024). Revista Internacional De Desarrollo Humano Y Sostenibilidad, 1(2), 87-113. https://doi.org/10.51660/ridhs12181